AVISO: Utilizamos cookies propias y de terceros para mejorar nuestros servicios y mostrarle publicidad relacionada con sus preferencias mediante el análisis de sus hábitos de navegación. Si continua navegando, consideramos que acepta su uso. Puede cambiar la configuración de su navegador u obtener más información aquí.

Viernes, 03/07/15 - 12:41 h

Presentan la solución de un problema matemático de hace 80 años en un congreso en Santiago

EUROPA PRESS

Viernes, 25 de enero del 2013 - 19:16

Lee el artículo completo en: 20 Minutos - Tecnología

[ 0 ]
EUROPA PRESS Se trata del teorema de Neumann, que tendrá "considerables" aplicaciones para las generaciones futuras, entre otras, en escáneres médicos.Ha sido resuelto por los profesores Eva Gallardo y Carl Owen, que han trabajado juntos durante tres años para dar con la solución.El teorema, según han explicado ambos autores, se centra en los "subespacios invariantes en espacios de Hilbert".La solución del teorema matemático de Neumann, considerado uno de los problemas abiertos de mayor notoriedad desde su formulación en los años 30 del siglo XX por el húngaro John von Neumann, tendrá "considerables" aplicaciones para las generaciones futuras, entre otras, en escáneres médicos.La Universidade de Santiago de Compostela (USC), donde se celebra el congreso de la Real Sociedad Matemática Española, ha sido el escenario este viernes de la presentación "en directo" de "una noticia de alcance" para la comunidad matemática. Tras el trabajo de los profesores Eva Gallardo y Carl Cowen, este teorema ya tiene un desenlace.Un teorema que, según han explicado ambos autores ante la expectación de los asistentes en el Aula Magna de la Facultad de Matemáticas, se centra en los "subespacios invariantes en espacios de Hilbert".La explicación del teorema"Si giras una pelota, siempre gira sobre un eje. Y estamos en dimensión finita, donde siempre hay un subespacio invariante para algo que es un operador lineal. En dimensión infinita, el problema estaba abierto", ha indicado Gallardo después de la exposición de Cowen, en inglés y utilizando el movimiento de una pelota de baloncesto como imagen."Lo que hemos resuelto", ha proseguido la profesora, de 39 años y que ya elaboró varios trabajos junto al estadounidense, "es que en dimensión infinita, en un espacio de Hilbert, siempre hay un subespacio invariante, no trivial, para todo operador que sea lineal y continuo".El presidente de la Real Sociedad Matemática ha profundizado en la teoría. "El resultado que se expresa aquí hoy es que, si tuviésemos una pelota de infinitas dimensiones, ahora sabemos que todos los ciudadanos podrán descubrir que siempre hay un subespacio invariante en torno al cual la transformación, el movimiento que están considerando, pues es un giro", ha ilustrado.Eva Gallardo y Carl Cowen trabajaron "muy duro" durante los últimos tres años para dar una solución a este problema. "Y el punto del problema era que no se sabía si iba a haber un contraejemplo o iba a ser un resultado positivo", ha indicado la profesora."Esperamos que tenga aplicaciones. Está bastante relacionado con la vida real", ha resaltado, después de indicar que lo que les dio "cierta flexibilidad" en su investigación fue abordar el problema "desde el punto de vista de la variable compleja de la teoría de funciones", ya que este es un teorema "clásico" en teoría de operadores en análisis funcional.Un segundo intentoCarl Cowen, por su parte, ha revelado que hace años ya trató de resolverlo, pero lo dejó al no conseguir resultados, hasta que comenzó a colaborar en el año 2000 en varios trabajos con Gallardo, que hizo la tesis postdoctoral con él."La sensación es que todavía dices: 'a ver si nos hemos equivocado en algo'; pero no, por ahora sigue en pie", ha subrayado la joven profesora. A este respecto, Cowen, de la Universidad West Lafayette, ha justificado en la supervisión de "muchos expertos" y en el hecho de que se trate de una solución "corta", de unas 20 páginas, su convencimiento acerca de que están en lo correcto.Por último, preguntada por los periodistas, la profesora Eva Gallardo ha animado a los jóvenes matemáticos a "pelear lo que hay", puesto que "no hay otra manera" de salir adelante y tener éxito.En cuanto a la financiación de la ciencia, ha mandado un mensaje a los responsables gubernamentales, y es que "toda la inversión en ciencia pura da resultados". Estos se materializan "a medio, largo plazo", pero "siempre", por lo que las ayudas públicas en este ámbito se tratan, a su juicio, de una "inversión segura".Carl Cowen ha rematado su comparecencia conjunta —previa a la conferencia en la que dará a conocer su descubrimiento a la comunidad científica— valorando España como "un precioso ambiente en el que trabajar".

Suscríbete al boletín de la información

La mejor información a diario en tu correo.

Lo más visto

Secciones

Sobre nosotros

Siguenos también en: Facebook Twitter